A Small Dose of Toxics in the Home Or An Introduction To Toxics In The Home

Chapter 29
A Small Dose of Toxicology - The Health Effects of Common Chemicals

By
Steven G. Gilbert, PhD, DABT
Institute of Neurotoxicology & Neurological Disorders (INND)
Seattle, WA 98115

E-mail: sgilbert@innd.org

Supporting web sites web: www.asmalldoseoftoxicology.org - "A Small Dose of Toxicology"

File: Chapter 29 ToxicsAtHome.ED2.ED3.10.28.20.docx - Date: 10/28/2020 - Page 1 of 14

Dossier

Name: Toxics at Home

Use: Various uses in household products (medicines, pesticides, cleaning

agents, paint, mercury thermometers, plastics)

Source: Naturally occurring (mold, radon) and purchased household products

Recommended daily intake: usually not recommended

Absorption: skin, oral, inhalation

Sensitive individuals: children (account for majority of poisoning incidents

around the home)

Toxicity/symptoms: varies greatly (acute and long-term effects)

Regulatory facts: EPA, FDA, Consumer Product Safety Commission **General facts:** Many home products are necessary, but often less toxic

alternatives are available

Environmental: serious environmental concern (i.e. mercury, detergents) **Recommendations:** use less toxic alternatives, dispose of hazardous wastes

properly

Introduction

The home is a complex environment that contains many hazards and toxic materials, some naturally occurring and many others that we bring into the home. A common naturally occurring hazard is radon, a radioactive material that is released from the soil and bedrock. In a humid environment, mold and mildew can grow, releasing spores and toxins into to the indoor air. Dust mites, invisible to the human eye, roam our home and in the right circumstances cause health problems. Some of the greatest hazards are from what we bring into the home.

The toxicology of household products is fascinating because it deals with products that we are all familiar with and because so many different kinds of products are involved. A typical home may contain cleaning products, cosmetics and personal care products, paints, medications, pesticides, fuels, and various solvents. Thermometers and thermostats may contain mercury a well-known neurotoxicant. Older homes were often painted with a lead-based paint which when consumed causes serious developmental effects. Building materials may contain toxic solvents that are released into the home. The toxicity and ingredients of household products vary widely, but highly toxic products are found in most homes.

Table 18.1 Toxics in the Home

Toxics in the Home

- Radon
- Asbestos pipe insulation, linoleum, celling tile
- Lead in paint
- Indoor air pollutants
- Second-hand smoke
- Mold & mildew
- Household hazardous waste
- Dust from inside and tracked in from out side
- Consumer products, e.g. old foam mattresses or cushions
- Household products
 - Cleaning products, cosmetics and personal care products, paints, medications, pesticides, fuels, and various solvents, mercury-based thermometers

Both the general environment and individuals in the home can suffer the consequences of the produces used in and around the home. Many household products contain chemicals that when used contaminate our air and water. Consumers in the United States use about 8.3 billion pounds of dry laundry detergent and about a billion gallons of liquid detergent per year. Some of these laundry and dishwashing detergents contain phosphate. High phosphate levels in water encourage the growth of algae, which can suffocate other marine life. Mercury from broken thermometers can harm the individual but also moves into the atmosphere, into surface waters and ultimately into the fish we eat. Paints, varnishes, motor oil, pesticides, antifreeze, and fluorescent lights are clearly hazardous wastes that when improperly disposed of harm the environment. Consumers in the United States generate 1.6 million tons of household hazardous waste each year. How many pounds of hazardous waste do you have in your home?

Many countries and regions have poison centers that provide information for people exposed to toxic substances. It is estimated that there are over 17,000 chemicals found in home, many with only limited toxicity information. The centers maintain large databases on products and substances as well as the appropriate response following exposure. Every day there are many household exposure incidents, some resulting in immediate and serious consequences (see below). By far the most vulnerable population is children. In the United States more than 50% of the poisoning incidents involve children less than six years of age. The poison centers primarily focus on acute or immediate response to an incident. The poison centers also handle information and animal poisoning related calls.

Poisoning events in United States - 2007

- 2.5 million reported exposures
- 1.6 million information calls
- 51% involved children under age 6
- 93% occurred in the home
- 423,290 treated in a health care facility
- 1,597 deaths reported in 2007

Source: National Poison Centers, 2007 data (Bronstein et al, 2008)

Exposure to hazardous substances in the home can also have long-term health implications. Children and the elderly spend a great amount of time in the home, increasing their exposure to any toxic substances found there. Over 15 million people in the United States suffer from asthma, including 5 million children. The number of children with asthma continues to increase despite ongoing research into the possible causes. The causes may include household dust, droppings from dust mites and mold. Asthma-related illness result in over 100,000 children visiting a hospital and losing over 10 million school days per year. A very different kind of long-term disability results from childhood lead exposure. The U.S. Centers for Disease Control and Prevention estimated that over one million U.S. children have elevated blood lead levels due to household exposures.

Exposure

Routes of Exposure

Residents can be exposed to household products by accidental ingestion, skin contact, splashing into the eyes, and by inhalation of vapors or airborne particles. Exposures can be short-term, resulting from a single product use or spill, to long-term, from frequent product use or off gassing of volatile components.

File: Chapter 29 ToxicsAtHome.ED2.ED3.10.28.20.docx - Date: 10/28/2020 - Page 4 of 14

Ingestion

Direct ingestion of product Hand to mouth contact

Inhalation

Acute inhalation of product during use Chronic inhalation of indoor air

Skin/eye contact

Splashing/spilling during use Violent chemical reactions Contact with treated surfaces

Acute Exposures

In the year 2009, poison centers in the United States responded to nearly 2.5 million incidents, mostly home exposures to chemical products, animal bites, and poisonous plants. Over 50% percent involved children under the age of six. In all, 0ver 25,000 incidents resulted in medical outcomes deemed "major", and there were 1,544 deaths. Almost half stemmed from exposure to pharmaceutical products. Of the remaining exposures, the largest groups resulted from cosmetics and personal care products and household cleaners. Although the large number of incidents says more about the ubiquity of potentially hazardous products in the home than about their toxicity, the numbers also point out the extent of the potential dangers if products are toxic or if medical aid is not rapidly received. Many more deaths and serious injuries would occur if not for the rapid intervention of poison centers.

I also believe home is where the children are. This could mean a day care, grandmothers home, a school, a play ground, a friends house, as the kids get older a car, just think of all the places a kid might be. The multiple by all the exposures a child might receive. For example radiation from the sun could cause a sunburn before one is even aware there is a problem. In this very real senesce, I have only covered small amount of the ground,

Several groups of household products can have serious and rapid acute health impacts:

<u>Corrosives</u>: Strong acids, bases, or oxidizers can cause permanent eye damage, skin burns, and, if swallowed, sever gastrointestinal damage. Examples of corrosive products

File: Chapter 29 ToxicsAtHome.ED2.ED3.10.28.20.docx - Date: 10/28/2020 - Page 5 of 14

include alkaline drain cleaners and oven cleaners, acid-based toilet bowl cleaners and rust removers, concentrated disinfectants, and some concentrated pesticides, especially fungicides.

<u>Solvents</u>: Products with a high percentage of solvents, such as oil-based paints, paint removers, fuels, lighter fluids, furniture polishes, and some pesticides can cause potentially fatal pneumonia if aspirated into the lungs as a result of accidental ingestion. If used in an unventilated space, they can also cause symptoms of acute intoxication, including dizziness, nausea, and in some cases nerve damage or other effects.

<u>Medications</u>: Useful as prescribed, many medications are toxic and can be very dangerous if taken by someone other than the intended patient, especially a child, or if taken in too high a dose.

<u>Pesticides</u>: Although many household pesticides are rather dilute, some are concentrated enough to be acutely toxic. They include concentrates of insecticides, fungicides, and some herbicides.

Chronic Exposures/Chronic Effects

Chronic, or long-term exposures can occur through repeated use of a product or through contact with long-lasting residues in the air, soil, household surfaces, or dust. EPA's TEAM (Total Exposure Assessment Methodology) studies found that levels of a dozen volatile organic compounds were two to five times higher indoors than outdoors, regardless of the geographic location of the home. When volatile products are used indoors, levels of chemicals in the air can exceed background by 1000 times or more and persist for a long time. Contaminated soil can be a major source of exposure, especially for children who play in it or mouth their hands. In addition to isolated, elevated levels of contaminants from industrial sources, studies show consistently elevated levels of lead near the foundation of homes once painted with lead-based paint. Wooden decks built from treated lumber containing arsenic typically contaminate the soil beneath to levels far above background. Lead and other contaminants are tracked into the home on shoes, where they are stored in house dust. Carpets can contain large reservoirs of dust that eludes all but the most diligent vacuuming. House dust also can contain elevated levels of pesticides, combustion soot, nicotine, and allergens.

Products containing volatile ingredients such as solvents cause a general decline in indoor air quality when used inside the home. Volatile solvents often found in household products include those shown in the table below. The last column shows permissible air concentrations of these solvents in occupational settings. The higher the number is, the less toxic the material.

Volatile Toxic Chemicals

Table 18.2 Volatile Toxic Chemicals

Ingredient	Product	Occupational Exposure	
		Limits (ppm)	
Ethanol	Alcoholic beverages	1000	
Acetone	Nail polish remover	750	
Ethyl acetate	Nail polish remover,	400	
	marker pens		
Isopropanol	Rubbing alcohol,	400	
	personal care products		
Gasoline	Motor fuel	300	
Methanol	Paint remover	200	
Turpentine	Paint thinner	100	
Xylene	Spray paint, market pens,	100	
	adhesives		
Hexane	Adhesives	50	
Methylene chloride	Paint remover	50	
Toluene	Paint remover, spray	50	
	paints		
Carbon monoxide	Auto exhaust, burning	10	
	charcoal		
Naphthalene	Mothballs	10	
Paradichlorobenzene	Mothballs	10	
Formaldehyde	Particle board, plywood	0.30	
Chlorpyrifos	Insecticide*	0.014	

^{*} Chlorpyrifos was discontinued in U.S. for household use after the end of 2001.

Certain household products contain ingredients that can cause long-term or delayed chronic health effects such as cancer, reproductive effects, nervous system effects, and developmental effects. The table below lists some examples of types of products, ingredients, and the health effects that overexposure may lead to.

Chronic Health Effects

Table 18.3 Chronic Health Effects

Ingredient	Found in*	Cancer	Reproductive	Developmental	Nervous
Chlorothalonil	Fungicide	X	1	1	
Triforine	Fungicide			X	
Carbaryl	Insecticide	X			X
Arsenic	Treated				
	wood	X			X
Lindane	Lice				
	treatment	X			X
Paradichlorob	Mothballs	X			
enzene					
(PDCB) or					
naphthalene					

Hexane	Adhesive				X
Lead	Hair dye,	X	X	X	X
	toys, paint				
Benzene	Gasoline	X		X	
Aspirin	Pain				
	relievers		X	X	
Ethyl alcohol	Beverages			X	X
Methylene	Paint				
chloride	remover	X			X
Polybrominate	Mattresses,				
d diphenyl	cushions,		X	X	X
ethers or	plastics				
(PBDE)					
Bisphenol A	Baby				
(BPA)	bottles, can		X	X	X
	liners,				

^{*} Potential for listed ingredient to be found in product or category varies depending on product formulations.

Risk

One of the greatest difficulties in estimating the toxicity of household products is the fact that most of the ingredients are not disclosed on product labels or other documents. Household pesticides, for example, often contain well over 90% so-called "inert ingredients", more recently referred to as "other" ingredients. The terminology relates to their function in the product rather than their toxicological characteristics, and these ingredients, with few exceptions, are not listed on product labels. Although product labeling regulations in the United States do allow one to deduce certain acute toxicity characteristics from careful reading of required label warnings, the conclusions one can draw are limited. Frequently, the Material Safety Data Sheet (MSDS), a document required by the U. S. Occupational Safety and Health Administration, contains LD50 or other toxicity data. Unfortunately, many MSDSs contain incomplete and apparently inaccurate information, making them a flawed tool for toxicity assessment. In other countries, labels are quite different, and even less information may be available.

The risk of adverse effects from exposure to household products is difficult to estimate because of the wide variety of products available, the many ingredients they contain, the presence of many "trade-secret" ingredients, and the wide variety of exposure scenarios. It is worth noting that the highest exposures to household products are typically to those most likely to be particularly susceptible: children, the elderly, and the chronically ill. These groups tend to spend on average more time in the home than adults aged 20 to 60, who are more likely to work outside the home and to be in good health. Children also exhibit behaviors that increase their exposure to toxic agents in the home: they play on the floor, they put their hands in their mouth, and they are curious about their surroundings. Combined with their low body weight, proportionately higher intake of

food and water, and their developmental stage, these behavioral factors contribute to elevated risks.

Risks are undoubtedly increased when products are not used as directed. Examples might include using concentrates at full strength, mixing products with incompatible chemicals, using with inadequate ventilation, or deliberately inhaling solvents to get high. Reasons for "misusing" products are many:

- 1. Label too difficult to read (e.g. too small, not in native language, poorly written)
- 2. Consumer doesn't bother to read label
- 3. Directions too difficult or inconvenient (what is "adequate" ventilation?)

Nevertheless, even when used as directed, some products may cause significant health risks. Estimates of health risks are often controversial because they involve various assumptions about exposure that are difficult to measure and because the risk assessor may have a financial stake in the outcome. There are many examples of consumer products that have been banned or taken off of the market because of unacceptable health or environmental risks: the pesticides chlorpyrifos and diazinon, DDT; the wood preservatives pentachlorphenol and creosote; arsenic-treated lumber; carbon tetrachloride; and lead-based paint. Since the risk of using these products didn't change on the day they were taken off the market, one can infer that the products were unsafe before removal. More recently, extensive testing has turned up lead in many childrens' toys. Brominated flame retardants (polybrominated diphenyl ethers or PBDE) are used in foam rubber and plastics, where they end up in house dust. In addition, Bisphenol A, an endocrine disruptor, is used in baby bottles and food-can liners. Given the huge number of consumer products on the market and entering the market every year, regulatory agencies will typically be delayed in identifying unsafe products.

Risk Reduction

The risk from using household products can be reduced by reducing the hazard level (toxicity), by reducing exposure, or both. Reducing the toxicity—choosing less-toxic products—is arguably the best strategy because safer product choices can do more than reduce risk in the home. Safer products may also use fewer toxic chemicals in their manufacture and may be safer for the environment when disposed of.

When no safer alternatives are available, reducing exposure becomes especially important. Usually, product labels will explain the recommended safety equipment and procedures appropriate for a particular product. In addition to safety gear, ventilation, and mixing precautions, labels may also mention storage requirements. Unfortunately, some label directions are not specific enough to guarantee that following them will guarantee safe use.

Label-directed or common sense precautions should always be taken, even when using relatively low-toxicity products. For example, all chemical products should be kept out of children's reach.

Innovative programs are also available to help home residence reduce exposure to toxic substances. The Master Home EnvironmentalistTM program of the American Lung Association trains volunteers to visit home and contact a Home Environmental Assessment. Home residents are encouraged to make changes to reduce exposures to toxic substances. A major focus of this program is on reducing asthma in children.

Safer Alternatives

Avoiding the use of toxic products can take the form of avoiding chemical products altogether for certain jobs, choosing products made from safer ingredients, and buying ready-to-use dilutions rather than concentrates. The table below shows some examples of less-toxic alternatives for common products.

Less-toxic Alternatives

Table 17.4 Least-Toxic Alternatives

Alternative	Instead of Using	Toxic Ingredient Avoided
Latex paint	Oil-based paint	Solvents
Snake, plunger	Caustic drain opener	Corrosive lye
Scouring powder	Acid toilet cleaner	Corrosive hydrochloric acid
Beneficial nematodes	Insecticide for soil grubs	Diazinon, carbaryl or other insecticide
Weed puller, mulch	Herbicide	2,4-D, dichlobenil, etc.

A few additional words are necessary regarding alternatives to pesticides. Pest control is a complex process involving living organisms that can often be difficult to control using a single method. Integrated Pest Management (IPM) is a decision making process that utilizes preventative strategies, careful monitoring, realistic pest tolerances, and natural enemies to reduce the need for chemical pesticides. Although chemical pesticides may be used in IPM, a good IPM program typically reduces chemical use considerably and attempts to use only those chemicals that will minimize human and environmental impacts. Household pest control can follow the same strategies, using non-chemical methods whenever possible and choosing lower-impact pesticides if chemicals are necessary.

Recommendations

Although the risks of household products are difficult to estimate, taking common-sense precautions can easily reduce them:

- 1. Minimize purchase of toxic or otherwise hazardous products.
- 2. Store all chemical products out of children's reach.

- 3. Read and follow label directions.
- 4. Dispose of hazardous products in accordance with local regulations.

It is difficult for consumers to identify least-toxic products by comparing product labels. Government agencies could do much more to assist and protect consumers:

- 1. Government agencies should require that all product ingredients be listed on product labels. This practice would allow product users to better understand product hazards and to avoid ingredients they are allergic to or don't wish to purchase.
- 2. Government agencies in the United States that regulate product labels should harmonize their labeling systems to avoid inconsistencies between products that are regulated by different agencies.
- 3. Ultimately a more precautionary approach needs to be adapted to protect human and environmental health.

More Information and References

Slide Presentation

A Small Dose of Toxics at Home presentation material and references online: specific information including a PowerPoint presentation at: www.asmalldoseoftoxicology.org

Web site contains presentation material related toxics in the home.

European, Asian, and International Agencies

- England Department of Health Healthy Schools. Online: <
 http://www.healthyschools.org.uk/ > (accessed: 23 October 2020).
 Healthy Schools, while focusing on schools is wonderful site with information of students, parents, and teachers on creating a healthy in door environment.
- World Health Organization WHO | Children's environmental health indicators.
 Online: health (accessed: 23 October 2020).
 Site has information on global child health issues.

North American Agencies

• U.S. Household Products Database – National Institutes of Health, National Library of Medicine. Online: https://medlineplus.gov/householdproducts.html (accessed: 23 October 2020).

Site has a range of information about household products including their potential health threats.

- U.S. Environmental Protection Agency Household Waste. Online: https://www.epa.gov/hw/household-hazardous-waste - (accessed: 23 October 2020).
 - Site has a self-directed educational program on managing household waste.
- U.S. Environmental Protection Agency Chemicals under the Toxic Substances Control Act (TSCA Online: < https://www.epa.gov/chemicals-under-tsca > (accessed: 23 October 2020).

 The site promotes safer chemicals and risk education.
- U.S. Environmental Protection Agency Indoor Air Quality (IAQ). Online: < https://www.epa.gov/report-environment/indoor-air-quality.
 This site contains information on indoor air and related health issues.

California

- California Environmental Protection Agency, or CalEPA Online: <
 <p>https://calepa.ca.gov > (accessed: 23 August 2020).

 Led California in creating and implementing some of the most progressive environmental policies in America
- California Office of Environmental Health Hazard Assessment (OEHHA).
 Online: < https://oehha.ca.gov > (accessed: 23 October 2020).

Non-Government Organizations

- American Lung Association of Washington (ALA). Online: https://www.lung.org (accessed: 23 October 2020).
 Seeks to improve lung health and prevent lung disease
- American Association of Poison Control Centers (AAPCC). Online:
 http://www.aapcc.org/> (accessed: 23 October 2020).
 "AAPCC is a nationwide organization of poison centers and interested individuals."
- California Poison Control System (CPCS). Online: <http://www.calpoison.org/
 (accessed: 25 October 2020.
 Site has wide range of information on poisons in and around the home.
- CR Consumer Reports is an independent, nonprofit member organization that works side by side with consumers for truth, transparency, and fairness in the

marketplace. Online: https://www.consumerreports.org/ (accessed: 23 October 2020).

- Environmental Working Group (EWG). Online: < http://www.ewg.org/ > (accessed: 23 October 2020).
 This organization provides information on a range of consumer products including data bases on sunscreens and cosmetics.
- Center for Health, Environment and Justice Online: < http://chej.org >
 (accessed: 25 October 2020).
 Site is "geared to protect children from exposures to environmental health hazards."
- Toxic-Free Future (formally Washington Toxics Coalition (WTC)). Online: https://toxicfreefuture.org (accessed: 25 October 2020).

 Toxic-Free Future advocates for the use of safer products, chemicals, and practices through advanced research, advocacy, grassroots organizing, and consumer engagement to ensure a healthier tomorrow.
- Washington State, Seattle Office of Sustainability & Environment. Online: <
 http://www.seattle.gov/environment/ > (accessed: 25 October 2020).
 The Office of Sustainability & Environment (OSE) collaborates with a wide range of stakeholders to develop innovative environmental solutions that foster equity, vibrant communities, and shared prosperity.
- Green Seal. Online: <http://www.greenseal.org/> (accessed: 25 October 2020).
 Green Seal encourages the purchasing of products and services that cause less toxic pollution and waste.
- Washington State, King County Household Hazardous Waste. Online: <
 <p>https://kingcountyhazwastewa.gov > (accessed: 25 October 2020).

 Site contains information on managing and disposing of household hazardous products and waste.
- Women's Voices for the Earth. Online: < https://www.womensvoices.org > (accessed: 25 October 2020).
 The mission of Women's Voices for the Earth (WVE) is to amplify women's voices to eliminate the toxic chemicals that harm our health and communities.

References

 Human Health Risk Assessments Quick Reference Guide. California Environmental Protection Agency,. Available as a pdf file. Online.: <

- https://dtsc.ca.gov/brownfields/human-health-risk-assessments-quick-reference-guide > (accessed: 25 October 2020).
- Annual Reports of the American Association of Poison Control Centers Online: https://aapcc.org/annual-reports . Multiyear reports.
- Ott, Wayne R., and John Roberts. Everyday Exposure to Toxic Pollutants; Scientific American, February 1998.
- Steinemann, Anne C. Fragranced consumer products and undisclosed ingredients. Environmental Impact Assessment Review. 29(1), 2009, 32-38.
- Brenda Afzal, Nsedu Obot Witherspoon, and Kristie Trousdale Children's Environmental Health: Homes of Influence --http://dx.doi.org/10.1289/EHP749 - Environmental Health Perspectives • volume 124.number 12.December 2016